Y12 4U 2005 Q3 a iii.

(a) Ellipse
$$E: \frac{x^2}{100} + \frac{y^2}{75} = 1$$
.

(iii) A circle is tangential to the ellipse E at $P(5, 7\frac{1}{2})$ and at $Q(5, -7\frac{1}{2})$. Show that the centre of the circle is $(1\frac{1}{4}, 0)$.

Solution:

(Note: This solution is an alternative to using the result of (ii), the normals.)

Strategy: Let the centre of the circle be (h, 0).

The equation of the circle C is $(x - h)^2 + y^2 = r^2$.

Differentiate both sides: $d[(x-h)^2 + y^2] = 2(x-h) dx + 2y dy = 0$, $\frac{dy}{dx} = -\frac{x-h}{y}$.

The gradient of tangent at $P(5, 7\frac{1}{2})$:

For E: $m_E = -\frac{b^2 x}{a^2 y} = -\frac{75 \times 5}{100 \times 7\frac{1}{2}} = -\frac{1}{2}$.

For C: $m_C = -\frac{x-h}{y} = \frac{h-5}{7\frac{1}{2}} = \frac{2h-10}{15}$.

 $m_C = m_E$, $\frac{2h-10}{15} = -\frac{1}{2}$, $h = 1\frac{1}{4}$.

The centre of the circle $(h, 0) = (1\frac{1}{4}, 0)$.